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While broadening the applicability of (’/ )-dependent target values for the

bond angles in the peptide backbone, sequence/conformation categories with

too few residues to analyze via previous methods were encountered. Here, a

method of describing a conformation-dependent library (CDL) using two-

dimensional Fourier coefficients is reported where the number of coefficients for

individual categories is determined via complete cross-validation. Sample sizes

are increased further by selective blending of categories with similar patterns of

conformational dependence. An additional advantage of the Fourier-synthesis-

based CDL is that it uses continuous functions and has no artifactual steps near

the edges of populated regions of ’/ space. A set of libraries for the seven

main-chain bond angles, along with the ! and � angles, was created based on a

set of Fourier analyses of 48 368 residues selected from high-resolution models

in the wwPDB. This new library encompasses both trans- and cis-peptide bonds

and outperforms currently used discrete CDLs.

1. Introduction

The knowledge of standard values for bond lengths and angles

in proteins has been and continues to be a crucial foundation

for both predictive and experimental model building as well as

validation. Since the pioneering work of Pauling, Corey and

Branson (Pauling et al., 1951), the dominant paradigm has

been that a single ideal value can be used for each chemical

type of bond, and sets of these values have been updated over

time (Bowen et al., 1958; Vijayan, 1976; Engh & Huber, 1991,

2001). This is now changing because, as was anticipated by

earlier theoretical (see, for example, Dodson et al., 1976; Jiang

et al., 1995) and empirical (Karplus, 1996; Jiang et al., 1995)

studies, ultrahigh-resolution, mostly globular, protein crystal

structures (Berkholz et al., 2009), along with membrane

proteins and collagen and amyloid-forming peptides (Esposito

et al., 2013), show that the main-chain bond angles of poly-

peptides do not have single fixed ideal values. Instead, they

vary as a function of the conformational angles ’ and  . It was

seen that backbone bond lengths also vary (Berkholz et al.,

2009; Improta et al., 2015), but these variations are less reliably

determined and are small enough to be of little practical

significance for modeling accuracy.

So that this complexity of ideal backbone bond angles could

be accounted for during modeling and validation, a confor-

mation-dependent library (CDL) for the geometry of trans-

peptide units was developed and described as CDL-v1.2

(Berkholz, Shapovalov et al., 2010; Berkholz et al., 2009;

Tronrud et al., 2010). It was then shown that using this library

during crystallographic refinement, as opposed to a conven-

tional single-value library (SVL), results in 30–50%

improvements in how well the modeled backbone bond angles
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agree with the library values, along with a very small

improvement in the fit to the crystallographic data (Tronrud et

al., 2010; Tronrud & Karplus, 2011; Moriarty et al., 2014, 2016).

It has also been shown that predictive modeling using Rosetta

(Das & Baker, 2008) gives improved results if the backbone

bond angles and the ! torsion angles are allowed to vary from

the conventional standard target values (Conway et al., 2014;

Stein & Kortemme, 2013). Of course, target values such as

these, derived from crystal structures, should not be mixed

with molecular-mechanics force-field terms (for example van

der Waals and electrostatics) because crystal structures do not

represent energy-minimal models, but instead time and space

averages of huge numbers of molecules, and their atomic

locations represent the equilibrium values that result from the

interplay of the various forces present.

In this first-generation backbone CDL (Berkholz et al.,

2009; Tronrud et al., 2010), residues were grouped into eight

classes: the four residue-based categories were proline,

glycine, isoleucine or valine, and ‘other’, and each of these

categories appeared either in a general context or in a context

where the following residue was a proline, since residues

preceding proline have a distinct behavior (see, for example,

Nicholson et al., 1992; Karplus, 1996; Ho & Brasseur, 2005).

Introducing a shorthand nomenclature that uses t for trans-

peptides, c for cis-peptides and X for ‘other’ residues (and is

more fully discussed in Section 2.1), these eight categories are

tPt, tGt, tIVt, tXt, tPtP, tGtP, tIVtP and tXtP. For each of

seven backbone angles in each residue category, the empirical

patterns derived from a search of the Protein Geometry

Database (PGD; Berkholz, Krenesky et al., 2010) were

smoothed using kernel density averaging (Berkholz et al.,

2009) and the resulting function was discretized into a 36 � 36

(= 1296) element lookup table that provided the empirical

target value for each 10 � 10� box of ’/ space (Fig. 1a). For

lookup-table elements with fewer than three observations, the

local average was deemed to be unreliable and was replaced

by the global average value.

While this CDL was a conceptual and practical step

forward, it has certain limitations. A first set of limitations

derives from the discrete nature of the library. This means that

the CDL is not differentiable and cannot be used for energy or

molecular dynamics (see, for example, Bernauer et al., 2011).

Even worse, the discrete binning of the library leads to

unnatural steps, including rather dramatic ‘cliffs’ that often

occur at the edges of populated regions because fewer than

three observations exist in the adjacent bins [see, for example,

Fig. 1a near (’,  ) = (�120�,

�30�)]. As these edges typically

occur at conformations involving

atomic clashes that are lessened

through bond-angle distortions

(see, for example, Berkholz et al.,

2009) the abrupt transition back

to global average values is

completely inappropriate. In

reality, the adjacent entry would

be expected to have even more

extreme bond angles to alleviate

the more extreme potential colli-

sion (see, for example, Brereton

& Karplus, 2015).

This expectation is shown to be

true by comparing the original

CDL with one based on a larger

data set (compare Figs. 1a and

1b). While the target values for

the well sampled regions change

little, the updated CDL provides

values for many of the regions

around the edges of the old CDL,

and these newly included regions

do indeed continue the trends

that were apparent in the

conformations that were inside

the old boundaries.

A second limitation relates to

the poor ability of this type of

CDL to handle small populations.

For such populations, a large

majority of the ’/ bins will have
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Figure 1
Discrete NCaC CDL for a large and a small residue category. (a) Discrete CDL for tXt residues based on
10 921 residues from a PGD survey performed on 9 October 2009. (b) CDL produced by an equivalent
analysis using 28 944 residues derived from a PGD search on 4 April 2016. (c) Discrete CDL based on 44
residues from the 2009 data for tGtP residues. (d) Equivalent CDL based on 1267 residues from the 2016
data. The number of residues for this category increased primarily owing to the relaxation of the model
resolution filter from 1 Å to 1.5 Å. For each pair of plots the color scheme is defined by the bar on the right.
The ’,  and NCaC angles are all measured in degrees.
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fewer than three residues, resulting in a library that is not very

different from a conventional SVL. For instance, the original

CDL for the tGtP class of residues only had four ’/ bins with

conformation-dependent values (Fig. 1c). With the larger data

set, both the area of space covered and the range of target

values has widened substantially (Fig. 1d). The increase in the

diversity of target values occurs because in this case the new

CDL has enough residues in the corners of the Ramachandran

plot and in the �L region (i.e. ’,  ’ +60�, + 50�) to justify

using specific target values rather than global averages, and

these regions contain considerably lower and higher values for

the NCaC angle, respectively (see Table 1 for angle abbre-

viations).

A third limitation is simply that the CDL as developed was

restricted to residues linked by trans-peptide bonds, and thus

is not appropriate for residues with a cis-peptide link either

before or after them. Although cis linkages are rare, occurring

in only 0.3% of peptide bonds, with 6% of proline resides

being preceded by a cis-peptide and 0.04% of all other amino

acids (Weiss et al., 1998), they have been shown to have

distinct geometric features (Jabs et al., 1999). Despite these

differences, they are currently not appropriately handled in

the SVLs used in crystallographic refinement. To our knowl-

edge, the only cis-peptide bond angle treated as a special case

in current SVL restraint libraries is the CNCa bond angle for a

cis-proline residue (Engh & Huber, 2001), even though other

bond angles are also known to differ for cis-peptide bonds

whether prior to a proline residue or not (Jabs et al., 1999).

Our goal in this work was to create a new CDL which

overcomes these limitations. The primary obstacle to success

was the absence of specific structural examples to define our

library. This lack of data exists both in the sequence/confor-

mation space, where some amino-acid types are rarely found

next to a cis-peptide bond, and in every (’/ ) plot, where large

regions are unoccupied. Despite the extreme rarity of these

instances, a library of target values must always return a value

to its calling program. The fact that something has not been

seen before does not indicate that such a model will never be

seen, if only by mistake. While we wish for a library with great

accuracy in situations where there are data to define that

accuracy, we do not believe that accuracy is necessary for

those which are exceedingly rare. In those cases a library need

only provide plausible target values which the modeling

program can use while it tries to repair the likely faulty model

that it has been given.

In seeking to extend the CDL concept to include residues

linked by cis-peptide bonds, we realized that it was essential

that we develop an approach that could capture real trends in

bond-angle variations from small populations. We conceived

of representing the conformational dependence of bond

angles as a Fourier series (FS), which is well known as an

effective way to model periodic functions with varying levels

of detail. We found that this not only helped with capturing

trends for small populations, but at the same time, because

they are continuous functions, solved the problems associated

with the discontinuous nature of our first-generation CDL.

Also, through developing a complete cross-validation (CCV)

strategy to optimize the level of detail included in the Fourier

analysis, we are able to assess the quality of any library. Such

an analysis shows that the FS-based CDLs are an improve-

ment over SVLs and over the previous, discrete CDL.

Here, we present this new FS-based approach and use it to

generate CDLs for the conformational dependence of the

backbone bond angles for all 32 classes of residues which

include all cis- and trans-peptide possibilities. Using new

capabilities of the PGD, we were also able to create confor-

mation-dependent target values for the peptide plane torsion

angle (!) and a dihedral angle (called by some �; Laskowski et

al., 1993) designed to reflect the chirality (in its sign) and

tetrahedral nature of the C� atom by assessing how far the C�

atom is from the plane formed by N, C� and C. The definitions

of the names used for all of the angles in the library can be

found in Table 1.

We designate this FS-based CDL library CDL-v2.0.

2. Methods

2.1. Nomenclature for the 32 categories

For this study, residues were categorized into the same eight

sequence types that were used in our previous work (Tronrud

et al., 2010). This set of categories was embellished by adding

special cases for the cis/trans configuration of the peptide

bonds before and after the residue. This additional complexity

required that we develop a novel nomenclature.

Each of the 20 canonical amino acids is assigned to one of

four classes: G for glycine, P for proline, IV for either

isoleucine or valine, and X for the others. If the amino acid is

followed in the protein by a proline residue, we add the letter

P to the end of the category name. We indicate a cis-peptide
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Table 1
Abbreviations.

For a more detailed description of the angles, see Section 2.3.

CaCO C�—C—O bond angle
CaCN C�—C—N+1 bond angle
CbCaC C�—C�—C bond angle
CNCa C�1—N—C� bond angle
NCaC N—C�—C bond angle (also known as �)
NCaCb N—C�—C� bond angle
OCN O—C—N+1 bond angle
� (Zeta) dihedral angle which describes the volume enclosed by

the C� atom and its ligands. It is the angle between the
planes defined by (C�, N, C) and (N, C, C�).

! C�—C—N+1—C�+1 torsion angle of the peptide bond that
follows the C� atom

CCV Complete cross-validation
CDL Conformation-dependent library
FS Fourier synthesis
PGD Protein Geometry Database; currently unavailable
R.m.s.d. Root-mean-square deviation
SVL Single-value library
wwPDB Worldwide Protein Data Bank
hmax Largest Fourier coefficient index (in any direction) in a given

FS
�ccv Estimate of the standard deviation of a target value arrived at

through CCV
t trans
c cis
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bond with the letter c and a trans-peptide bond with a t. Since

every nonterminal amino-acid residue within a protein has a

peptide bond both before and after it, we place either a c or a t

on either side of the central designator in the category name.

A specific example of this nomenclature would be an argi-

nine residue that has trans-peptide bonds on either side and is

followed by a histidine residue. This residue would be in

category tXt. If this residue were instead followed by a proline

residue, it would be in category tXtP. A further example

would be the most frequently occurring category containing a

cis-peptide bond, which is a cis-proline residue followed by a

trans-peptide bond and something other than a proline

residue. This category is named cPt.

While this notation is focused on residues, many papers that

consider cis/trans conformations instead focus on the peptide

bonds. It is important to note that the presence of a single cis-

peptide bond will result in two neighboring residues with a cis

notation. For example, if the structure is . . .Ala(t)His(c)

Pro(t)Ser(t) . . . then the central residues will be categorized as

tXcP and cPt. Each cis-peptide will potentially be found

associated with two residues, although either instance may not

be present in the search results if it fails one of the filters.

2.2. Protein Geometry Database searches

The data sets were created using the Protein Geometry

Database (PGD; Berkholz, Krenesky et al., 2010) web service,

which sadly is currently not operational. To avoid N- and

C-terminal residues, the search length was set to 4, with the

residue of principal interest being in position 2. All searches

were performed using the default settings for R-factor and

Rfree upper limits (0.25 and 0.3, respectively) and a 25%

sequence-identity threshold (Wang & Dunbrack, 2003). The

PGD implemented a residue-quality filter based on three

quantities derived from the B factors of the model: Bmc, Bsc

and Bg (the average main-chain B factor, the average side-

chain B factor and the B factor of the first � atom, respec-

tively). We used the default cutoff of 25 Å2 for each of these

filters, except that the filters on the B factors for side-chain

atoms in the first and last residues were removed.

Separate searches were performed for each of the 32

conformation/sequence categories. A trans-peptide bond was

defined as 140� � ! � 220� and a cis-peptide bond as �40� �
! � 40�. Residues with ! angles outside these ranges were

individually examined and all were rejected based on the fit to

their electron-density maps (Kleywegt et al., 2004).

The searches should be limited to models based on

diffraction data of sufficiently high resolution that they are

minimally affected by prior geometry libraries. Fig. 1(a) of

Tronrud & Karplus (2011) shows that models in the wwPDB

determined from X-ray data of resolution higher than 1.5 Å

begin to deviate from the nearly universally used CSD-X

library and that the r.m.s.d. levels out at resolutions higher

than 1 Å. This behavior implies that X-ray data begin to

overwhelm the geometry restraints around 1.5 Å resolution

and dominate refinement at resolutions higher than 1 Å. All

searches would ideally be limited to models of 1 Å resolution

or better, but for residue types that occur rarely 1.5 Å is a

good compromise.

For each category we performed a search limited to models

based on data of 1 Å resolution or better. If this search

returned fewer than 500 residues, however, we broadened the

cutoff for the category to 1.5 Å.

As even high-resolution models in the wwPDB may contain

residues which are simply not correct, we sought to avoid the

skewing of the library by incorrect models with outlier angles

by individually examining all residues which contained bond

lengths or angles deviating by more than eight standard

deviations from the mean. We identified 65 such residues and

examined each one using Coot (Emsley et al., 2010). We

removed 38 of these from our data set. Nearly all of the

rejected residues had multiple conformations, but too few

atoms were split to allow the model to fit the density and have

reasonable geometry. Some of the models did not have a map

on the Electron Density Server (Kleywegt et al., 2004) and

were rejected based solely on the poor modeling of disorder

and/or bad geometry.

One of the reviewers of this paper pointed out that cis-

peptide bonds following N-terminal residues are most likely to

be erroneous. Since our PGD searches looked for four-residue

fragments, it is possible that the first residue could be an

N-terminus and that the leading cis-peptide bond could indi-

cate an unreliable model. This led us to review each of the 174

cis-nonproline residues in our data set. We found that five

were N-terminal; two of these were clearly incorrectly

modeled and the remaining three were ambiguous. All of the

rest of these members of our data set were of acceptable

quality. It is entirely reasonable to expect that there is an

equivalent fraction of N-terminal trans-peptides that are

poorly modeled. Since none of the other 169 fragments

exhibited modeling errors, the frequency of low-quality, non-

N-terminal residues in the data set is expected to be much

smaller.

We recognize that our data set, which contains over 40 000

residues, will contain some that were incorrectly built. To

minimize the distortions to the CDL that these errors could

introduce, we used strategies to ensure that each ’/ function

was created based on a large number of residues. These

involved both lowering the search cutoff to 1.5 Å resolution

for smaller groups and also blending sparsely sampled cate-

gories with more populated ones.

2.3. Domain of the library

The previously described conformation-dependent library

(Berkholz et al., 2009; Moriarty et al., 2014) provided target

values for the five protein main-chain bond lengths and seven

bond angles. Subsequent to this work, the PGD was enhanced

to add support for both the ! and � angles (see Table 1 for

definitions of the angle names). A discrete CDL was created

for the ! angle and added to the Phenix refinement program

(Liebschner et al., 2019; Moriarty et al., 2016).

At the start of this work, we decided to pursue CDLs for all

of the main-chain lengths and angles supplied by the PGD.
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With the development of the tools described later, we learned

that any statistically significant bond-length variation with ’/ 
was too small to have any practical significance. This left us

with the seven bond angles CNCa, NCaCb, NCaC, CbCaC,

CaCO, CaCN, the torsion angle ! of the peptide following the

residue and the dihedral angle � (Table 1).

A protein is a repeating sequence of residues, and therefore

each of these angles repeat. While it seems likely that the

angles centered on the C� atom will vary most strongly in

response to the ’/ angles of the very same residue, the same

conclusion is not as certain for the angles defined by atoms in

the linker between residues. In our previous, discrete, CDL the

target values for the leading CNCa and the trailing CaCO,

CaCN and OCN angles were chosen (Berkholz et al., 2009;

Tronrud et al., 2010), and we adopted this convention here.

Consistent with earlier observations (Esposito et al., 2005),

Berkholz et al. (2012) concluded that of the two ! angles that

bracket the residue, the ! angle that follows the residue is

better predicted by a function of the ’/ angles of the residue.

Therefore, in this paper, it is only the dependence of this

trailing ! angle on conformation that is considered and

modeled. [This is also consistent with the IUPAC nomen-

clature, which associates each residue with the peptide bond

that follows it (Hoffmann-Ostenhof et al., 1974), but is

different from the common usage that associates a residue

with the cis or trans conformation of the peptide preceding it

owing to the high probability that a cis-peptide will be

followed by a proline.] However, the notable impact on the

expected bond angles of the cis versus trans nature of the

peptide bonds both preceding and following the central

residue are accounted for through our 32 categories of resi-

dues. Accounting for these impacts was, in fact, the main

motivation for this project.

2.4. Least-squares determination of Fourier coefficients to
model u/w dependence

The Fourier coefficients of any function, sampled at discrete

points, can be calculated with least squares. The function

defining the target values for a restraint is defined as

�ð’; jCÞ ¼ Phmax

h¼�hmax

Phmax

k¼�hmax

Cðh; kÞ exp 2	iðh’þ k Þ; ð1Þ

where the Fourier coefficients C(h, k) are a set of complex

numbers and �(’,  |C) is the modeled value as a function of ’
and  given that particular set of Fourier coefficients. In this

study, � is the restraint target value. Since such angles must be

real-valued, the Fourier coefficients must have Hermitian

symmetry [i.e. Cðh; kÞ ¼ C�ðh; kÞ] and C(0, 0) must be real.

The amount of detail that is possible for �(’,  |C) is limited by

the parameter hmax, which we optimize using complete cross-

validation as described below.

We initially tried the simple least-squares residual function

Pn

i¼1

½�oð’i;  iÞ � �ð’i;  ijCÞ�2; ð2Þ

to estimate the optimal set of Fourier coefficients. �o(’i,  i) is

the list of values to be fitted (here a series of angles associated

with particular ’/ angles). While this equation is quadratic in

C(h, k), its normal matrix is often singular owing to the large

regions of ’/ space which are not sampled. When the matrix

is singular there are an infinite number of sets of Fourier

coefficients which fit the sample points equivalently but have

very different behaviors in the unsampled regions, often

fluctuating wildly (see, for example, the blue trace in Fig. 2a).

This problem was addressed in Rowicka & Otwinowski

(2004), where it occurs in the similar problem of representing

the probability distribution of protein conformational angles

in a Ramachandran plot. Their solution is not directly

applicable here since we are not working with probability

distributions. In addition, it is very difficult to implement.

In our method for preventing this singularity, and damping

the fluctuations, we followed the common procedure of adding

a restraint. Assuming that the smallest amount of variability

consistent with the data is best, we sought to minimize the

amplitudes of the Fourier coefficients C(h, k) [except for

C(0, 0)]. Among a few weighting schemes that we tried, we

found that a weight that increased linearly with frequency
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Figure 2
One-dimensional fits of the variation of the NCaC angle for the cPt
category as a function of  . The black dots indicate the 1140 observed
values. (a) The best least-squares fits using hmax = 6 are shown for the
unrestrained and the restrained Fourier coefficients. (b) Four restrained
fits with differing values of hmax.
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gave good results. The function we minimize to determine

C(h, k) is

Pn

i¼1

½�oð’i;  iÞ��ð’i;  ijCÞ�2þW
P

h;k 6¼0;0

ðh2þk2Þ1=2jCðh; kÞj2: ð3Þ

The first term is a sum over the data, and its value becomes

larger when the data set is larger. The overall weight W is used

to ensure that the restraint term can grow to match. This factor

is similar to a Lagrange multiplier, and one would like to set it

as large as possible, imposing the strongest constraint, without

degrading the fit to the data. We found, empirically, that the fit

to the data is not terribly sensitive to the exact value of W, but

that a larger value could be applied to the very large category

tXt. For the fits that we report, we set W = 1000 when

analyzing the tXt category (	29 000 residues) and W = 250 for

all other categories (all <	 5000 residues).

As seen in Fig. 2(a), the Fourier summation of the

restrained coefficients (red line) has the desired property of

fitting the data points similarly to the unrestrained fit (blue

line), while showing little variation in the unsampled regions.

While this smoothing restraint meets all our requirements, it

should not be considered to be ‘correct’ in the regions with no

data since we have no knowledge of what is ‘correct’. For

instance, there is no reason to suspect that the bump near  =

�120� is a real feature. We do not claim this to be the best

smoothing restraint, but simply one that works adequately.

As illustrated in Fig. 2(b), the least-squares filtering can be

carried out for any given value of hmax, providing more

detailed fits to the data. The program that we used to calculate

an FS-CDL – given a set of data points, the chosen hmax and

weight – is written in Fortran 2003 and is available as

supporting information.

2.5. Complete cross-validation to determine the optimal hmax

Complete cross-validation (CCV) can be used to choose

between several different models of how a data set behaves

(Mosteller & Tukey, 1968). With this method one assesses the

quality of a particular model by repeatedly determining the

optimal parameters using data sets with each individual

sample left out, and using these parameters to predict the

omitted point. The r.m.s.d. of the discrepancies from all of

these tests, which we call �ccv, is an unbiased estimate of the

amount of variability that is not fitted by this model. The
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Figure 3
Complete cross-validation to determine the optimal hmax for two CDLs. (a) Plot of �ccv for the NCaC angle of category tXt, with 28 944 residues, as a
function of hmax. The optimal value for hmax is marked with a red dot. (b) ’/ plot of the corresponding FS-CDL calculated at the optimal hmax of 9. A
solid contour line is drawn at multiples of 5�, with dotted contours every 1�. (c) The same as in (a) but for category t IVcP, with 97 residues. (d) The FS-
CDL for category t IVcP calculated at the optimal hmax of 3. The insets in (a) and (c) are plots showing the location in ’/ space of the sample points in
each category. For each plotted CDL the color scheme is defined by the bar on the right. The ’,  and bond angles are all measured in degrees.
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model that fits the most variation in the data (i.e. the lowest

�ccv) is superior.

To find the optimal hmax, we considered each potential value

of hmax to be a different model. �ccv was calculated for all

values of hmax between zero and 13.1 The typical behavior, for

the analysis of main-chain geometry data, was that �ccv

decreased rapidly and at some point started increasing (see

Figs. 3a and 3c), revealing the optimal hmax. When the number

of residues was greater than 500 this minimum was broad and

the precise value of hmax was not critical. For some residue

categories with smaller sample sizes the curve did not follow

this simple pattern, making the choice of hmax unclear.

Fortunately for these cases the problem was eliminated by the

increase in sample size afforded by category blending (see

Section 2.6).

A second problem that can impact small categories is that

complete cross-validation will overestimate the value of hmax

if the data set contains observations that are not truly

independent. To maximize the independence of the observa-

tions used to build the library, we used the PISCES server

(Wang & Dunbrack, 2003) option in the PGD to limit the

proteins in the data set to those with no more than 25%

sequence identity. Despite this filter, however, some homo-

logous proteins with very similar structures remained, and

their presence artificially increases the ‘optimal’ values of hmax

for some categories.

2.6. Blending categories

To overcome our inability to create meaningful CDLs for

categories with few to no residues, we look for sets of cate-

gories that can be merged. The compatibility of categories will

differ depending on the angle under consideration, requiring a

separate analysis for each angle. To avoid imposing an arbi-

trary size cutoff we look for blending opportunities in all

categories.

To decide which categories could benefit by being blended

with a larger category, we use the FS-CDL of the larger

category to predict values for the residues of the smaller

category and calculate the r.m.s.d. between these predictions

and the observations. Blending is clearly justified if this r.m.s.d.

is equal to or smaller than the �ccv of the CDL of the smaller

group, since this proves that the CDL of the larger category

has a predictive power at least as great as the smaller cate-

gory’s own library.

For simplicity, we represent both this r.m.s.d. and the CDL

�ccv by the number of percentage points decrease relative to

the smaller group’s SVL �ccv. This distillation allows us to

relate all three libraries at once. For example, consider a case

where the smaller category’s CDL �ccv is 90% of its SVL �ccv

and the larger category’s prediction has an r.m.s.d. of 85% of

the same SVL �ccv. The 10% decrease of the former is its

‘modeled variation’, while the modeled variation of the latter

is 15%. The five percentage points of additional modeled

variation is the ‘percent improvement’ achieved by the larger

category. A percentage improvement of zero would indicate

that the larger category predicts the variation of the smaller

category as well as the CDL derived from that category itself,

and the two categories can be blended. A positive value

indicates that the larger category predicts the variation better

than the smaller category’s CDL, and blending will improve

the quality of the CDL.

On the other hand, a negative percent improvement indi-

cates that the larger category is not predicting the smaller

category’s variation as well as an individualized CDL. How we

handle this depends on the size of the smaller category’s data

set. When it is large we tolerate very little degradation in the

CDL and will blend only if the difference is better than �1

percentage points. When the smaller category has few residues

we will blend in the presence of greater degradation.

Following this procedure, one is left with a list of categories

that have too few residues for our ‘percent improvement’ tests

to function. The categories that make up each of the existing

blending groups are examined for patterns in their amino-acid

types and peptide conformations. The remaining ‘tiny’ cate-

gories are placed in the blending group whose pattern they

best match. This, again, is a subjective choice.

Since residues fall into these ‘tiny’ categories only rarely,

few residues in protein models will be affected by poor choices

and, in any case, the CDL applied to these residues will at least

contain plausible target values since they will be based on

actual protein models.

Both stages of category classification required decisions for

which we could not define a rigorous set of rules. Some

examples of such decisions are as follows. How many residues

are necessary for the ‘percent improvement’ test to be valid?

How much worse should we allow the blending group’s

prediction be relative to the category’s own �ccv and still be

acceptable? How distinct must a pattern be and how large

must a group be to create a new category? The admittedly

subjective choices we made in these cases described above

were based on careful consideration of various structural

commonalities between groups and an experience-guided

intuition. Assessing the wisdom of these inherently subjective

choices will only be possible when there are many more

models in the wwPDB. To make such a future re-evaluation

possible, we have included in the supporting information the

Mathematica notebooks (Wolfram Research) that we used to

assist our blending choices.

2.6.1. Nomenclature for blended groups. We indicate a

blended group by enclosing the name of its most sampled

category in angle brackets (i.e. ‘h ’ and ‘i’). For example, the

CDL for the NCaC angle that results from blending the resi-

dues of categories tXt, cXt and tPcP is named NCaC/htXti.

2.7. Utilizing the CDL-v2.0

In the supporting information, we have supplied an imple-

mentation of our library written in Mathematica script

(Wolfram Research). The Fourier coefficients for each angle/

category combination are stored in the file. The target value is

generated by identifying the category of the residue (based on
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1 Going beyond 13 greatly increased the computation time and did not prove
necessary in this application.
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its amino-acid type, whether or not it is followed by a proline

and the conformation of the leading and trailing peptide

bonds) and evaluating the Fourier series at the ’/ location.

The standard deviation is the �ccv of that category. The

complexity of the blending mapping is hidden from the

application by duplicating the blended coefficients for each

component individual group.

3. Results and discussion

3.1. Selecting residues from the wwPDB

Drawing on a representative subset of high-resolution

structures of proteins from the Worldwide Protein Data Bank

(wwPDB Consortium, 2018), we used the Protein Geometry

Database (PGD) web service (Berkholz, Krenesky et al., 2010)

to create our data set. At the time, the PGD was loaded with

data taken from the wwPDB on April 4, 2016. An inventory of

all of the protein chains then in the PGD is listed in the

supporting information file 20160404-selection.txt.

For each of the 32 categories, we performed an initial search

allowing only models based on X-ray diffraction data of 1.0 Å

resolution or higher. Only five categories contained more than

500 residues (Table 2), and for the others we performed a

second search using the more relaxed filter of 1.5 Å resolution,

which typically yielded about nine times more residues. This

relaxation, for example, increased the number of hits for

tIVtP from 260 to 3026 and for tGtP from 138 to 1267. Even

with the large increases that occurred for some small cate-

gories, the large categories searched at 1 Å resolution, tXt,

tIVt, tGt, tPt and tXtP, still dominate the total number of

residues in our data set.

We felt this relaxation was acceptable because the analysis

of refinement tests in both Tronrud & Karplus (2011) and

Moriarty et al. (2016) showed that refinement restraints do not

dominate model bond-angle values at resolutions of 1.5 Å

resolution and better, although they do still influence the

model. Even using the 1.5 Å resolution limit, we found only

2730 residues bounded on one side and/or the other by cis-

peptide bonds out of a total of 48 368.

Numbers of residues in each category ranged from 28 944 to

zero (Table 2), and even using the 1.5 Å resolution limit many

of the 32 categories have few observations: 15 have less than

20 and 22 have less than 500. Six categories have zero obser-

vations, and these include all four categories with two cis-

peptides in a row with the second cis-peptide not followed by a

proline (Table 2). For these categories with zero observations,

even though no residues were found in these categories and

we have only indirect information to base our library on, we

still have chosen to include them in the CDL because

completeness is one of our primary goals in the library design.

As noted in Section 1, these very sparsely sampled categories

were handled by ‘blending’, which will be described shortly.

The results of our searches have been deposited as

supporting information in both Mathematica (Wolfram

Research) and CSV text formats.

3.2. Fourier series representation of the CDL

To represent the conformational dependence of a target

value, we have chosen to use a two-dimensional Fourier
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Table 2
Number of residues found in each residue category.

The number is shown in bold for those categories where searches were limited
to structures determined at 1 Å resolution and better.

Category N Category N Category N Category N

tXt 28944 tXc 117 cXt 132 cXc 0
t IVt 5042 t IVc 6 cIVt 14 cIVc 0
tGt 3523 tGc 39 cGt 19 cGc 0
tPt 1743 tPc 14 cPt 1140 cPc 0
tXtP 1382 tXcP 859 cXtP 7 cXcP 1
t IVtP 3026 t IVcP 97 cIVtP 0 cIVcP 0
tGtP 1267 tGcP 148 cGtP 2 cGcP 1
tPtP 711 tPcP 68 cPtP 63 cPcP 3

Figure 4
FS-CDLs for the tXt category for three hmax values. These plots are graphical representations of the CDLs for the NCaC angle of the tXt category
calculated with a range of values for hmax. Of these three, the CDL with hmax = 6 has the lowest �ccv. Of all values for hmax, 9 is optimal, with a �ccv of
1.384� and a modeled variation of 35%. For each plotted CDL the color scheme is defined by the bar on the right. The ’,  and bond angles are all
measured in degrees. A solid contour line is drawn at multiples of 5�, with dotted contours every 1�.
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synthesis (FS). Since ’/ space ‘wraps around’ just as electron

density in a crystal, the values of the reciprocal-space indices

(h and k, corresponding to ’ and  , respectively) must like-

wise be integral. The level of detail of each FS-CDL can be

controlled by changing the limit on the number of high-

frequency Fourier coefficients. To simplify matters, we set a

common upper limit on both indices and call it hmax. An FS-

CDL with hmax = 0 will have no variation and a value equal to

the average value of the angles of the residues; this is a single-

value library (SVL). Three example FS-CDL fits for a parti-

cular data set with hmax = 0, 6 and 13 are shown in Fig. 4. Each

additional Fourier coefficient requires the addition of two

more independent parameters to the CDL, with the total

number of parameters equaling (2hmax + 1)2. One would, of

course, prefer to limit the number of parameters to the lowest

number which still model the data.

The choice of sine waves as a basis set is not only familiar

but is tied to the underlying physics of bond-angle variation

with conformation. Bond angles are deformed away from the

values that they would adopt in small molecules by nonbonded

interactions with surrounding atoms, and these contacts

appear and disappear as conformational angles turn. For a

torsion angle describing the orientation of two sp3-hybridized

atoms, one would expect the strongest contacts to vary with a

periodicity of three, resulting in a strong h = 3 Fourier coef-

ficient. The relationships between protein main-chain atoms

are more complex, resulting in a more complex Fourier

analysis, but still we expect, and find, that the CDL can be

represented principally by low-resolution Fourier coefficients.

This raises the question of the value that should be chosen

for hmax. As expected, the r.m.s.d. between any given FS and

the raw data used to generate its Fourier coefficients continues

to become lower as hmax increases, making it useless for

defining hmax. This is a classic problem in modeling and is

successfully solved by cross-validation (Mosteller & Tukey,

1968). Two common approaches to cross-validation are to

leave out a discrete subset of data, say 5–10%, as has been

used for many years in X-ray structure refinement (Brünger,

1997) and far longer in many other fields (see, for example,

Clark, 1975), or to carry out complete cross-validation (CCV),

also known as ‘leave-one-out’ cross-validation (Mosteller &

Tukey, 1968).

CCV is the ultimate extension of the cross-validation

principle. Each observation is left out of the analysis in turn,

and the model is applied to the remainder to predict that

observation. The r.m.s.d. of the resulting discrepancies is

calculated and is here called �ccv. This is an unbiased estimate

based on the largest possible amount of data while at the same

time treating all data points equally. The �ccv is a good esti-

mate of the standard uncertainty of the prediction of the

model.

CCV can be computationally intensive since it requires a

full analysis of the data for each data point. While for large

data sets simple cross-validation performs adequately, it is

unreliable for small data sets. CCV gives superior results for

data sets of all sizes, but is especially useful when assessing

models based on small data sets because the amount of

computation is less and the value of using as much data as

possible is greater.

The �ccv is a powerful tool for comparing the utility of

various models applied to the same data set. The best model

for predicting a new observation will be the one with the

lowest �ccv. One use we made of �ccv is to determine the value

of hmax which best models the variation in the data set. When

one calculates �ccv for a range of values of hmax, generally one

finds that �ccv will decrease as hmax increases, but at some point

�ccv will begin to rise (see Fig. 3). This point of minimal

standard uncertainty is the optimal value for hmax.

In addition, we used �ccv to assess the utility of any parti-

cular CDL relative to an SVL. When the �ccv for a CDL is

lower than that of the SVL, we conclude that the modeled

variation in that CDL is meaningful. We find it convenient to

quantify this as the difference between the SVL �ccv and that

of the CDL, expressed as a percentage of the SVL �ccv. We call

this metric the ‘modeled variation’ of the CDL. For instance,

the SVL for NCaC/cPt has a �ccv of 2.45� and the optimal FS-

CDL has a �ccv of 1.86�, meaning that the modeled variation is

100(2.45 � 1.86)/2.45 = 24%.

As is typical for the FS-CDLs developed here, the vast

majority of the power of the CDL relative to the SVL is

achieved by the first few Fourier synthesis terms (see, for

example, Figs. 3a and 3c). Also, typically, the smaller the data

set, the smaller the optimal hmax and the smaller the modeled

variation (Table 3 and Supplementary Tables S4, S5 and S6).

In some cases the optimal hmax is zero, meaning that the SVL is

best and the existing data do not justify using a CDL.

Table 3 shows the �ccv values for the SVL and FS-CDL

libraries for the NCaC angles of the well represented cate-

gories with trans–trans conformations. For the larger cate-

gories, the CDLs are able to account for about 20–35% of the

observed variability. CDLs for categories containing cis-

peptide bonds (other than cPt and tXcP) have few residues in

our data set and perform less well, but usually are superior to

the SVL (Supplementary Tables S5 and S6).

Since the �ccv of a CDL is an estimate of the standard

uncertainty of that restraint, it is the proper value to use when
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Table 3
Modeled variation of the FS-CDLs for the NCaC angle in tt sequence
categories relative to their SVLs.

The �ccv of the SVL and the best CDL are compared for the NCaC angle of
each trans–trans category. The values for all backbone angles of all categories
are listed in Supplementary Tables S4–S6.

SVL FS-CDL

Category
No. of
observations �ccv (�) hmax �ccv (�)

Modeled
variation (%)

tXt 28944 2.14 9 1.38 35
t IVt 5042 2.10 8 1.36 35
tGt 3523 2.28 4 1.52 33
tPt 1743 1.99 7 1.48 26
tXtP 1382 2.18 7 1.57 28
t IVtP 3026 2.42 8 1.87 23
tGtP 1267 2.11 5 2.08 14
tPtP 711 2.40 5 2.05 14
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weighting restraints relative to each other. A restraint based

on a CDL with a small �ccv should be given more importance

than one with a large �ccv. In most cases the restraints will be

weighted by 1/�2
ccv.
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Table 4
Comparison of the performance of discrete CDLs and FS-CDLs based on the same data.

This table compares the performance (as measured by �ccv in units of degrees) of three styles of libraries based on the same 2016 data set for a selection of main-
chain angles and residue categories. The first is an SVL whose target values are simply the mean of the angles in the data set. The second is a discrete CDL of the
same type as CDL-v1.2 and the third is an FS-CDL without blending so that it is directly comparable. The best of the three is rendered in bold text (with one tie).
Percent improvement is the number of percentage points difference between the modeled variation of the FS-CDL and the discrete CDL.

CNCa NCaC

Category N SVL (�) Discrete CDL (�) FS-CDL (�) Percent improvement SVL (�) Discrete CDL (�) FS-CDL (�) Percent improvement

tXt 28944 1.77 1.49 1.46 2 2.14 1.41 1.38 1
tGt 3523 1.65 1.45 1.43 1 2.28 1.61 1.52 4
cPt 1140 1.83 1.69 1.69 0 2.45 1.92 1.86 2
cXt 132 1.73 1.65 1.62 2 3.05 2.95 2.25 23

Table 5
Blending groups for the NCaC angle.

Each row describes an individual residue category (ordered from the largest sample size to the smallest) with its number of residues and the modeled variation
listed. Each principal column describes a blending category with the total number of residues it contains, and its hmax, �ccv and percent modeled variation. In bold is
the percentage improvement that the blended CDL provides over the individual CDL for the categories it contains. (A residue category can be in only one
blending category.) Horizontal lines separate the categories with more than 500 residues and those with less than ten. We consider the former to have very good
individual CDLs, while the latter have too few residues to draw any conclusions. Those categories in the middle have CDLs that may or may not be reliable, but at
least have sufficient residues to make some judgments about blending.

Blended groups

N % htXti ht IVti htGti ht IVtPi htPti htXtPi htGtPi hcPti htXcPi htPtPi
N 29144 5056 3542 3129 1743 1506 1471 1140 860 777
hmax 9 8 4 8 7 7 5 6 8 5
CDL �ccv (�) 1.39 1.36 1.53 1.86 1.48 1.63 2.11 1.86 1.98 2.02
Modeled variation (%) 35 35 33 23 26 27 13 24 11 14

tXt 28944 35 0
t IVt 5042 35 0
tGt 3523 33 0
t IVtP 3026 23 0
tPt 1743 26 0
tXtP 1382 28 0
tGtP 1267 14 +1
cPt 1140 24 0
tXcP 859 11 0
tPtP 711 14 0

tGcP 148 0 +1
cXt 132 26 �2
tXc 117 6 +7
t IVcP 97 10 +5
tPcP 68 0 +2
cPtP 63 1 +3
tGc 39 1 +8
cGt 19 13 +6
tPc 14 0 +5
cIVt 14 7 +33

cXtP 7 ? ?
t IVc 6 ? ?
cPcP 3 ? ?
cGtP 2 ? ?
cXcP 1 ? ?
cGcP 1 ? ?
cIVtP 0 ? ?
cXc 0 ? ?
cIVc 0 ? ?
cIVcP 0 ? ?
cGc 0 ? ?
cPc 0 ? ?
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3.3. Comparing discrete and Fourier synthesis CDLs

While we would like to directly compare the performance of

CDL-v1.2 and CDL-v2.0, the actual list of residues used to

construct CDL-v1.2 was not preserved and it is not possible to

calculate �ccv for its various categories. We can, however,

perform a more stringent comparison with a library of iden-

tical construction based on our 2016 data set. Table 4 shows

the results of CCV assessments for a conventional SVL, a

discrete CDL library (like CDL-v1.2) and the FS-CDLs

described here, all derived from our 2016 data set. (For all

categories and angles, see Supplementary Tables S1–S6.)

For each CDL, whether of the discrete or Fourier synthesis

variety, one can calculate the percentage of the variation of

the angle not modeled by the SVL but modeled by the CDL

(i.e. modeled variation). We call the number of percentage

points by which the modeled variation of an alternative CDL

is smaller than the modeled variation of the original CDL the

‘percent improvement’.

For the heavily sampled categories (tXt, tGt and cPt) the

percent improvement is near zero. In contrast, the FS-CDL for

the NCaC angle in cXt performs 20 percentage points better

than the discrete CDL (increasing from 3% modeled variation

to 23%), an improvement of nearly a factor of eight. In this

category the 132 residues are scattered over the ’/ plot and

rarely reach a density high enough to trigger a specialized

block in the discrete CDL. These residues are able to support

an hmax of 3 in the FS-CDL, which allows the allows the target

value for this angle to be 	108� near (’,  ) = (�160�, �160�)

and 	113� near (�110�, �10�), with a smooth transition

between.

The �ccv values for the FS-CDL are equal to or lower than

the �ccv values for the discrete CDLs based on the same data

set (Table 4 and Supplementary Tables S4–S6), demonstrating

the overall superiority of the new CDL form.

3.4. Blending groups enhances the modeling of categories
with few to no residues

In general, categories that are represented by more than 500

residues produce quality FS-CDLs for all of the backbone

angles examined in this study. However, the remaining 22

categories had lower quality FS-CDLs, and of course for those

categories with no observations no FS-CDLs can be made.

Even though the ten of 32 categories with over 500 residues

represent 99.8% of all residues in the wwPDB, our goal is to

create a complete backbone CDL.

Fortunately, we found that the angles of rarely occurring

categories could be predicted well by the FS-CDLs from one

of the highly populated categories. This means that it is

possible to create FS-CDLs based on combined or blended

data sets from multiple categories. Such an analysis would

generally be justified only when the blended FS-CDL predicts

the residues in the individual categories roughly as well or

better than their individual FS-CDLs. Each angle of each

category must be treated as a special case since the char-

acteristics of a category (for example the conformation of the

two peptide bonds) will affect each angle differently.
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Figure 6
The blending of cPt and cGt categories to create !/hcPti. These plots show the individual CDLs, with the target values colored only in the vicinity of the
observed residues used to construct the CDL. While all of the residues of cPt lie in a narrow line near ’ = �90�, only seven of the 19 cGt residues do the
same. The two individual CDLs are very similar where they overlap, and this compatibility makes them excellent candidates for blending.

Figure 5
Blending groups vary for different angles. Shown are the cluster patterns
for the NCaC angle and the CaCN angle, using a common placement of
categories that was crafted specifically to allow these two sets of blendings
to be displayed most clearly. The text size of the category names is
proportional to the sample size, with the exception that categories with
few residues (<150) are printed at a fixed size with hollow letters.
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We did not try every possible

combination of category

blending, but instead used a

shortcut (see Section 2.6 for

details). We used the larger, and

not already blended, categories to

predict each angle and each

category. If one or more of these

categories predicted the angles at

least as well as the individual

CDL we chose to blend the target

category with the best performing

of the larger categories. We had

less faith in inferences based on

our statistical tests as the number

of residues in the target category

became smaller. In recognition of

this problem, we increasingly

biased our decisions towards

blending even in the presence of

some degradation in the perfor-

mance of the blended CDL.

Ultimately, we reached categories

with so few (or no) residues that

we did not trust any measure of

prediction accuracy.

The members of this final set of

categories were assigned to one

of the established blending

groups by a rather ad hoc process

of examining the structural simi-

larity in each blending group and

placing the leftover category in

the group that we considered to

be the most similar. For example,

the established blending groups

suggested that the cis/trans status

of the preceding peptide bond

was of less import to the angles in
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Figure 7
Ten blended groups for the NCaC
angle. Each panel describes a CDL for
one of the blended groups. The name of
the group is on the left. Across the top
is listed the number of residues used to
create the CDL, the hmax used in the
calculation and �ccv. A list of the
individual categories blended to form
this group is displayed at the bottom.
For each plotted CDL the color scheme
is defined by the bar on the right. The
’,  and bond angles are all measured
in degrees. A solid contour line is
drawn at multiples of 5�, with dotted
contours every 1�.
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the trailing peptide bond. Since there were only three residues

in the category cPcP, we used this observation to justify the

assumption that the FS-CDLs from tPcP for the CaCO, CaCN,

OCN and ! angles will also predict those in the cPcP category.

The smallest of the blended groups are !/htPcPi with N = 71

and CaCN/hcPtPi with N = 77. While these are very small

sample sizes with which to uncover conformational depen-

dence, all the residues for these categories occur in a small

region of ’/ space, resulting in a high population density.

Table 5 shows the blending groups and modeled variation

for the NCaC angle. For this angle, we found that the 32

individual categories could be reduced to ten blended groups,

with the smallest being based on 777 residues (NCaC/htPtPi).

The vast majority of the smaller categories are predicted more

successfully by one of these blending groups than by their

individual CDL. cIVt is particularly well served, with an

improvement of 33 percentage points (rising from 7% better

than its individual SVL to 40% better). Category cXt is

predicted slightly less well by the blending group we chose.

Since its individual CDL modeled 26% of the variability of its

SVL, this loss of two percentage points still leaves cXt ranking

among the best-modeled categories.

While none of the NCaC categories with more than 500

residues are blended together, some are quite similar. The FS-

CDL from tXt can predict the NCaC angles for tIVt residues

28% better than the tIVt SVL. While this is six percentage

points less than the FS-CDL of tIVt itself, it is a respectable

success. For the CNCa, CaCO, CaCN, OCN and ! angles, the

FS-CDL from tXt predicted the tIVt examples only one

percentage point worse than tIVt itself, and our protocol led

us to blend these categories (Supplementary Tables S7, S11,

S12, S13 and S15).

To demonstrate the kinds of differences that occur in

blending groups, the groups for the NCaC and CaCN angles

are compared in Fig. 5. Easy to notice in this figure, and

remarkable, is that none of the blending categories are

completely the same for these two angles. As one theme, the

side chain plays a larger role for the NCaC angle than for the

CaCN angle. For instance, for the

CaCN angle, but not the NCaC

angle, the tIVt category is well

predicted by the tXt CDL (see

the previous paragraph). In fact,

these two categories were never

blended when the C� atom is at

the vertex of the angle, but are

otherwise always blended. This

result is not surprising when one

considers the �-branched nature

of IV amino acids; however,

structural considerations were

not used in making these

blending choices.

Similarly, for the NCaC angle

many of the glycine-containing

categories blend together well,

but for the CaCN angle the

conformation of the following

peptide bond and whether or not

the next residue is proline

becomes more important, leading

to a fracturing of the glycine-

containing blending groups.

Surprisingly, proline residues

can often be blended successfully

with glycine residues for both of

these angles. Even though glycine

residues often exist in conforma-

tions that are impossible for

proline residues, when glycine

does adopt a compatible confor-

mation, certain bond angles are

not much different from those of

proline.

Fig. 6 demonstrates the

blending of cPt and cGt to create
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Figure 8
The first six of 12 blended CDLs for the ! angle. The data representation is described in the caption to Fig. 7
with the exception that no dashed contours are drawn. Fig. 9 shows the other 6 blended CDLs for this angle.
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the blended group !/hcPti. The cPt CDL predicts the ! angles

observed for the cGt category with an r.m.s.d. of 7.42� when

the CDL based directly on the cGt hits has an unbiased

prediction quality of �ccv = 8.46�, demonstrating that these

categories can be blended. This particular blending is

successful because the variation of the ! angle for the seven

cGt residues that fall in the same region as the proline residues

have similar variation. The other 12 residues are widely

dispersed in ’/ space and create a poor CDL by themselves,

but the cPt CDL does well with its prediction based primarily

on the average of their ! angles.

Clearly, a proline residue mistakenly built in a conformation

with a positive ’ angle would be unlikely to have an ! angle

similar to a glycine residue with the same ’/ angles. We do

not consider this to be a problem because our goal is to

provide the best target value for all residues that are likely to

exist, and we are not concerned about the accuracy of our

target values for ‘impossible’ residues. We also note that this

particular blending is actually not conceptually surprising

because the ! angle being modeled occurs after the residue,

where the unique features of proline residues do not have

substantial impact.

As noted above, the blending protocol was carried out

independently for all seven backbone angles, the � dihedral

angle and the ! torsion angle, and the results for each angle

(equivalent to Table 5) are given in Supplementary Tables S7

through S15.

3.5. The new backbone CDL-v2.0

Using this process, we have created a set of FS-CDLs which

cover all 20 amino acids and all cis/trans possibilities for the

peptide on either side, i.e. all 32 categories. As examples, plots

for each CDL for the blended groups of the NCaC and !
angles are shown in Figs. 7, 8 and 9. Plots for the complete set

of backbone angles are shown in Supplementary Figs. S1–S14.

These plots are repeated in Supplementary Figs. S15–S28,

where the CDL is displayed in a ‘paintball plot’ representation

like those shown in Fig. 6.

Recalling that blended groups

were independently constructed

for each angle, we note that

CaCO and ! have the most

groups with 12 each, while

NCaCb has the fewest with six (in

part because glycine residues do

not contain this angle).

The performance of each

blended group is measured by the

amount by which the �ccv of the

CDL decreases compared with

that of the SVL, which we express

as a percentage of the SVL value.

If the CDL encompasses all of the

variability of the angle the

‘modeled variation’ will be 100%,

but none of the CDLs based on ’/

 alone reach this ideal. Fig. 10

displays the modeled variation

for the blending groups in each

angle. The NCaC angle is handled

the best by the heavily sampled

group NCaC/htXti, modeling

35% of its observed variability.

CNCa, CaCO and CaCN all have

their htXti groups coming in

around 20%. The angles which

involve the C� atom are generally

modeled less well, we suspect

owing to the bundling of 16

residue types in X. The ! angle is

also modeled weakly. The angle

with the poorest performing CDL

is OCN. While its CDL does not

improve much upon the perfor-

mance of an SVL, this angle
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Figure 9
The last six of 12 blended CDLs for the ! angle. The data representation is described in the caption to Fig. 7
with the exception that no dashed contours are drawn.
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varies little and has very low modeled variations anyway (see

Supplementary Fig. S11). Blending groups based on fewer

residues than the tXt group usually perform less well, but they

also will be used less often in applications, resulting in fewer

consequences.

Some of the CDLs are quite complex, such as !/htXti
(Fig. 8) which has hmax = 11 and a range of 15�. As has been

discussed before (see, for example, Karplus, 1996; Jiang et al.,

1997; Esposito et al., 2005; Berkholz et al., 2009; Brereton &

Karplus, 2015), the major trends seen in CDLs are consistent

with quantum- and molecular-mechanics calculations and

make sense in terms of simple steric and electrostatic

considerations. While we suspect there are important things to

learn from particular details of such complex CDLs, such

considerations are beyond the scope of this paper. An

important advantage of an empirical library such as this one is

that it is useful for building more accurate structures even

without understanding the origins of all of its features. The

fact that the most accurately defined residues in the Protein

Data Bank behave this way is sufficient justification.

3.6. Comparison of the performance of the Engh and Huber
2001 SVL and CDL-v2.0

The most widely used protein geometry library is that

published by Engh & Huber (1991). This SVL was updated in

2001 (Engh & Huber, 2001) by making generally small

changes to most target values and introducing specialized

target values for the CNCa angle of cis- and trans-proline

(with no consideration of cis-peptide bonds in other residue

types nor of any residues followed by a cis-peptide bond).

Table 6 compares, for seven residue categories, the perfor-

mance of the Engh and Huber 2001 (E&H 2001) SVL with our

CDL-v2.0 for the CNCa and CaCN angles, as representative
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Figure 10
Percentage of modeled variation for every blended group. The amount of modeled variation by each blending group, grouped by angle, is plotted. The
lengths of the lines are proportional to the number of residues in that group. As a consequence, the summed length of all lines for each angle is
proportional to the total number of residues in the data set containing that angle. The colors of the lines are varied to allow the visualization of
overlapping lines.
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angles on the N- and C-terminal sides of the residue. The

libraries are assessed by their ability to predict the values in

our data set, and in every case CDL-v2.0 outperforms E&H

2001.

Since our assessment of CDL-v2.0 is cross-validated, its

improvement is not simply owing to overfitting. The leaves

two possible contributors to why CDL-v2.0 might be superior:

the mean values of the new library could be more accurate

and/or there really is a significant dependence on conforma-

tion. To distinguish these factors, we also determined the

performance (Table 6) of an SVL based on the current data set

and created using the same blending groups as CDL-v2.0 but

with hmax set to zero.

The seven residue categories shown include four for which

E&H 2001 has specific values and three for which it does not.

For the first four categories, the new SVL performs somewhat

better (	13%) than E&H 2001 owing to its altered target

values, which change between 0.1� and 0.9�. In every case the

conformational dependence contributes a larger improve-

ment, with the CDL-v2.0 library performing an additional 9–

33% better than even the new SVL.

The largest improvement occurs in CaCN/htGti. The CDL is

superior for this angle because it accounts for the 4� difference

between glycine residues with  ’ 0� and those with  ’
�180�, which by definition cannot be captured by any SVL.

The least impressive example is the CNCa/htPti blended

group. For this angle the CDL only provides an additional 9%

(or 0.12�) decrease. It is known that this angle depends

strongly on the ’ torsion angle (Berkholz et al., 2009), but ’ is

very restricted in proline residues.

The total improvement can be even greater in categories for

which E&H 2001 has no specific target values. The three

categories shown in Table 6 are general residues preceded by a

cis-peptide (hcXti) and general residues followed by a cis-

peptide (htXci and htXcPi). As expected, for these categories

very large improvements are obtained for the bond angle that

is part of the cis-peptide (31–70%) and more modest

improvements are seen for the bond angles in the trans-

peptides (7–17%). Also, as should be expected, the angle

served best is the CNCa/hcXti blended group, as this angle is

much larger in a cis-peptide bond, causing the target value of

the E&H 2001 SVL to predict these residues with a terrible

r.m.s.d. of 5.43�. Changing the target value to that of an

updated SVL dramatically improves the r.m.s.d. to 1.71� and

the CDL (using the CNCa/hcXti blended group) achieves a

slight further improvement to 1.61�.

3.7. Comparing CDL-v2.0 and CDL-v1.2

Figs. 11(a) and 11(b) compare the CDLs for the NCaC/htXti
category between CDL-v1.2 and the new CDL-v2.0. For the

well sampled regions of Ramachandran space the two libraries

are very similar, with a notable difference being the contin-

uous nature of the FS-CDL. In contrast, the two libraries

differ substantially in those regions of ’/ space where there

are few residues. In frequently occurring categories such as

tXt, this occurs along the ‘shores’ of the Ramachandran

occupied regions, where the new analysis eliminates the sharp

discontinuities.

This difference is even more dramatic in the rarer cate-

gories, as is shown for NCaC/htGtPi (Figs. 11c and 11d). The

CDL-v1.2 targets for this category were deduced from just 44

residues, which mostly clustered around (�60�, �50�) and

(�60�, �180�) in ’/ space. In CDL-v2.0 the equivalent entry

was based on 1471 residues, achieved by the expanded data set

of the new PGD search and the blending of eight categories of

residues (see Supplementary Fig. S3). This CDL exhibits much

more variability in the target value for the NCaC angle owing

to the presence of residues in regions such as ’/ = (60�, 50�)

and (�120�, 100�). It is able to make good use even of the

residues located in thinly sampled regions because of the

Fourier representation.

We cannot make a direct comparison of the two libraries

using �ccv since, as mentioned in Section 3.3, we did not

preserve the list of residues used to construct CDL-v1.2 and

cannot perform a cross-validation analysis. We can, however,

use our new data set to make two indirect comparisons:

generating a discrete CDL, such as CDL-v1.2, and an

unblended FS-CDL, such as CDL-v2.0, and comparing them

(Table 4 and Supplementary Tables S1–S6). The results show
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Table 6
Comparison of the performance of the E&H 2001 values, the SVL values
based on the current data set and CDL-v2.0.

Comparisons are shown between the quality of the predictions of the E&H
2001 library and CDL-v2.0. Also shown as ‘SVL’ are the SVL targets that
result when the CDLs in CDL-v2.0 are evaluated with hmax = 0 (i.e. the global
averages). The target values for SVLs are enclosed in square brackets, with
their standard deviations bounded by parentheses and written with units of the
least significant digit of the target value. For the SVL and CDL comparisons
target values were taken from the indicated blended groups. The categories
above the horizontal line are for groups where the E&H library provides
specific targets. For the rest, the E&H category used by most programs was
chosen. Only comparisons for the CNCa and CaCN angles are shown since
these angles are strongly influenced by the cis/trans status of their nearest
peptide bond.

CNCa CaCN

E&H 2001 SVL CDL-v2.0 E&H 2001 SVL CDL-v2.0

R.m.s.d. (�) �ccv (�) �ccv (�) R.m.s.d. (�) �ccv (�) �ccv (�)

tXt ‘Peptide’ htXti htXti ‘Peptide’ htXti htXti
1.78 1.77 1.46 1.62 1.55 1.21
[121.7 (25)] [121.6 (15)] [117.2 (22)] [116.7 (16)]

tGt ‘Glycine’ htGti htGti ‘Glycine’ htGti htGti
1.89 1.65 1.43 1.89 1.83 1.22
[122.3 (21)] [121.4 (16)] [116.2 (20)] [116.7 (18)]

tPt ‘t-Proline’ htPti htPti ‘Proline’ htPti htPti
1.39 1.35 1.23 1.92 1.86 1.30
[119.3 (15)] [119.6 (14)] [117.1 (28)] [116.6 (19)]

cPt ‘c-Proline’ hcPtti hcPti ‘Proline’ hhtXti htXti
1.84 1.82 1.69 1.68 1.61 1.16
[127.0 (24)] [127.3 (18)] [117.1 (28)] [116.7 (16)]

cXt ‘Peptide’ hcXti hcXti ‘Peptide’ htXti htXti
5.43 1.72 1.61 1.50 1.34 1.24
[121.7 (25)] [126.8 (19)] [117.2 (22)] [116.7 (16)]

tXcP ‘Peptide’ htXti htXti ‘Peptide’ htXtPi htXtPi
1.73 1.74 1.61 1.81 1.31 1.25
[121.7 (25)] [121.6 (15)] [117.2 (22)] [118.5 (13)]

tXc ‘Peptide’ htXti htXti ‘Peptide’ htXci htXci
1.69 1.71 1.48 2.96 1.33 1.24
[121.7 (25) [121.6 (15)] [117.2 (22)] [119.8 (13)]
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that the FS-CDL does as well or better in every category than

the discrete CDL based on the same data. This result,

combined with the knowledge that the new data set is nearly

three times larger, and that a blended FS-CDL will outper-

form an unblended one, leaves no doubt that CDL-v2.0 is

superior to CDL-v1.2.

4. Summary and outlook

The new protein main-chain library that we have presented

here has specific entries for all backbone conformations of all

20 amino acids and in each case performs better than CDL-

v1.2, which itself is efficient, effective and performed better

than conventional SVLs (Tronrud et al., 2010; Tronrud &

Karplus, 2011; Moriarty et al., 2016). Thus, CDL-v2.0 repre-

sents a step forward in the quality of crystallographic

restraints. It should also find use in other protein-modeling

applications, including those that could not make use of CDL-

v1.2 because it was not a continuous, derivatizable function.

In addition, we emphasize that the Fourier summation

method that we have introduced here for describing bond-

angle, � and ! distributions over ’/ space will be applicable

for modeling a wide variety of conformation-dependent

properties. Such applications could include side-chain CDLs,

which would not only allow differing target values for different

rotomers, but would allow variations in the target values

within rotomers. Also, CDLs could be developed for non-

protein molecules such as nucleic acids. The method is not

limited to geometric target values, but could also be used to

model the behavior of many other properties of molecules,

such as the chemical shifts seen in protein NMR experiments,

which appear to have a strong, systematic dependence on

backbone conformation (Ozenne et al., 2012).

While a library of bond angles parameterized by the ’ and

 angles of a residue is an advance over current stereo-

chemical libraries, there are many avenues for additional

improvement, especially as the size of the Protein Data Bank

grows. An obvious extension would be to add more inde-

pendent parameters, such as the conformation angles of

neighboring residues and the side-chain torsion angles.

Another direction would be to add more categories, such as

separating out some of the 16 residues in the X category and/

or separating out residues in helices and sheets or even in

more specific tripeptide or higher order conformational motifs

(see, for example, Hollingsworth et al., 2012). Indeed, it has

been reported that the NCaC bond angle and the ! torsion

angle of residues in regular secondary structures do differ

from residues in the same ’/ region but not in a helix or

sheet [see, for example, Fig. 7 of Touw & Vriend (2010) and

Fig. 3(a) of Berkholz et al. (2012)]. An effect of �-helix
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Figure 11
Comparison of CDL-v1.2 and CDL-v2.0 for the NCaC angle in categories tXt and tGtP. (a) CDL-v1.2 tXt. (b) CDL-v2.0 NCaC/htXti. (c) CDL-v1.2
tGtP. (d) CDL-v2.0 NCaC/tGtP. For each plotted CDL the color scheme is defined by the bar on the right. The ’,  and bond angles are all measured in
degrees. A solid contour line is drawn at multiples of 5�, with dotted contours every 1�.
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formation on geometry is also consistent with the presence of

a narrowly focused 	2� dip near (’,  ) = (�60�, �40�) seen

for the NCaC angle in CDL-v2.0 (Fig. 11b). In any of these

extensions, group sizes will become smaller, so the strategies

described in this paper, of FS modeling to overcome poorly

sampled populations, cross-validation to reliably assess the

quality of empirical target value functions and blending

similarly behaving categories, should all be very helpful.
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