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Abstract

The process of refinement is a large problem in function minimiza-
tion. To reduce the amount of computation the methods chosen to
minimize the function incorporate a number of assumptions. When
these assumptions break down special procedures must be used.

Most of these procedures are commonly known, such as rigid body
refinement, but an understanding of the details of the methods them-
selves allows one to know when and what procedure to apply.

1 Introduction

After the crude model of a protein is constructed we enter the stage of re-
finement. The parameters of the model are altered to improve the agreement
between the model and the experimental observations. If we construct a
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function which reflects the discrepancy between the these two, refinement
becomes the minimization of this function.

All are familiar with fitting models to data in this fashion. Finding the
“least-squares” line through a collection of points is the classic example.
However line fitting is easy and refinement is hard — The difference lies in
the relationship between the model and the experimental observations. This
paper will discuss how the particulars of our structural model limits our
ability to interpret diffraction data.

1.1 Method vs. Function

There is one distinction which must be clearly made, but is usually treated
in an ambiguous fashion. This is the difference between the two choices
to be made. First the function which describes the difference between the
observations and the predictions of the model. The second is the choice of
the method by which this function will be minimized.

There are several methods of minimization commonly used today. Most
are described in detail below. Each of them can be used to minimize any
function.

In crystallography three functions commonly used. They are the least-
squares residual, the empirical energy function, and the correlation coeffi-
cient.

The least-squares residual function is

f(p) =
all data∑

i

1

σ(i)2
(Qo(i)−Qc(i,p))2, (1)

where Qo(i) and σ(i) are the value and standard deviation for observation
number i. Qc(i,p) is the model’s prediction for observation i using the set of
model parameters p. The values of the parameters found by minimizing this
function are those which have the smallest individual standard deviation, or
the smallest probable error[4].

The justification for refining against an empirical energy function is the
belief that the true protein structure should be at an energy minimum as
well as a best fit to the crystallographic observations. While this is undoubt-
edly correct in the absence of errors in the measured intensities and energy
parameters, an analysis of the effect of the presence of such errors has not
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been done. In practice, usually the parameters of the energy function are
chosen in a fashion to allow the energy to mimic the least-squares residual.
Confusion can result if the value of such an “energy” function is interpreted
as an energy.

The correlation coefficient is a different measure of the agreement between
the model and the observations. In statistics it is used to judge whether
there is any agreement at all. This makes it very sensitive to changes in
the model when the agreement between the model and the observations is
only barely detectable. The correlation coefficient is commonly used in the
solution of rotation functions, but has not been used commonly in individual
atom refinement.

To describe a refinement protocol it is not sufficient to state one or the
other of these choices. One can not meaningfully state that a model was
refined with “least-squares”. Both the function and the method must be
stated.

2 Minimization Methods

Function minimization methods fall on a continuum. The distinguishing
characteristic is the amount of information about the function which must
be explicitly calculated and supplied for the algorithm. All methods require
the ability to calculate the value of the function given a particular set of values
for the parameters of the model. There are methods which require only the
function values (Simulated Annealing is such a method, it uses the gradient
of the function only incidentally in generating new sets of parameters.). Some
methods require gradient of the function as well. These methods, as a class,
are called Gradient Descent methods.

The method of minimization which uses the gradient and all of the second
derivative (or curvature) information is call the “Full-Matrix” method. The
Full-Matrix method is quite powerful but the requirements of memory and
computations for its implementation are beyond current computer technology
except for small molecules and smaller proteins. Also, for reasons to be
discussed, this algorithm can only be used when the model is very close
to the minimum — closer than most “completely” refined protein models.
For proteins, it has only been applied to cases where the molecule is small
(< 1000 atoms) which diffract to high resolution and have previously been
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exhaustively refined with gradient descent methods.

2.1 The Full-Matrix Method

An analysis of the Full-Matrix method, and all gradient descent methods
begins with the Taylor’s series expansion of the function being minimized.
For a generic function (f(p)) the Taylor’s expansion is

f(p) = f(p0)+

∣∣∣∣∣df(p)

dp

∣∣∣∣∣
t

p=p0

(p−p0)+
1

2
(p−p0)

t

∣∣∣∣∣d2f(p)

dp2

∣∣∣∣∣
p=p0

(p−p0)+ · · · ,

(2)
where p0 is the current set of parameters of the model. In all cases the
additional terms (represented by “· · ·”) are ignored. This assumption has
considerable consequences which will be discussed later.

We can change the nomenclature used in equation 2 to more closely match
those in refinement by defining p0 to be the parameters of the current model
and s to be a “shift vector” which we want to add to p0. s is equal to p−p0.
The new version of Equation 2 is

f(p0 + s) = f(p0) +

∣∣∣∣∣df(p)

dp

∣∣∣∣∣
t

p=p0

s +
1

2
st

∣∣∣∣∣d2f(p)

dp2

∣∣∣∣∣
p=p0

s (3)

and its derivative is∣∣∣∣∣df(p)

dp

∣∣∣∣∣
(p=p0+s)

=

∣∣∣∣∣df(p)

dp

∣∣∣∣∣
p=p0

+

∣∣∣∣∣d2f(p)

dp2

∣∣∣∣∣
t

p=p0

s. (4)

Since the first and second derivatives can be calculated given any particular
value for p0 this equation allows the gradient of the function to be calculated
given any shift vector. In addition the equation can be inverted to allow the
shift vector to be calculated given the gradient of the function.

At the minimum (or maximum) of a function all components of the gra-
dient are zero. Therefore we should be able to calculate the shift vector
between the current model (p0) and the minimum. The equation for this is
simple —

s = −
∣∣∣∣∣d2f(p)

dp2

∣∣∣∣∣
−1

p=p0

∣∣∣∣∣df(p)

dp

∣∣∣∣∣
p=p0

. (5)
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The Full-Matrix method is to use this equation, evaluated with the cur-
rent parameters, to calculate s. s is then added to p0 to give the set of
parameters which cause the function to be minimal, and in the case of re-
finement the best fit to the observations.

This method sounds great. One calculates a single expression and the
minimum is discovered. When fitting a line to a set of points this is exactly
what is done. In refinement something is obviously different. The difference
arrises from the “· · ·” which we choose to ignore. In the case of fitting a line to
points the terms represented by “· · ·” in fact are zero. The truncated Taylor’s
series is exact and the shift vector is also exact. In refinement these terms
are not equal to zero resulting in the shift vector giving only the approximate
location of the minimum.

The quality of the estimate is limited by the size of the terms which are
ignored. The terms of the Taylor’s series have increasing powers of s. The
first term ignored is multiplied by s3 and the higher order terms are multiplied
by ever higher powers. If s is small these higher order terms become quite
small also. Therefore the closer p0 is to the minimum the better estimate s
becomes.

The Full-Matrix method, and all the gradient descent methods which are
derived from it, becomes a series of successive approximations. An initial
guess for the parameters of the model (p0) is manufactured somehow. For
the shift vector to actually give an improved set of parameters the guess
must be sufficiently close to the minimum. The “sufficiently close” criteria
is rather difficult to calculate exactly.

The distance from the minimum at which a minimization method break-
down is called the “radius of convergence”. It is clear is that the Full-Matrix
method is much more restrictive than the gradient descent methods, and
the gradient descent methods are more restrictive than simulated anneal-
ing, Metropolis, and Monte Carlo methods. Basically the less information
about the function calculated at a particular point the larger the radius of
convergence will be.

The property of the Full Matrix method which compensates for its re-
stricted radius of convergence is its “power of convergence”. If the starting
model is within the radius of the Full Matrix method that method will be
able to bring the model to the minimum quicker than any other method.
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2.1.1 The Normal Matrix

The aspect of the Full-Matrix minimization method which prevents it being
used in common refinement is the difficulty in calculating the term∣∣∣∣∣d2f(p)

dp2

∣∣∣∣∣
−1

p=p0

. (6)

This matrix written out in full is

∂2f(p)
∂p2

1

∂2f(p)
∂p2 ∂p1

· · · ∂2f(p)
∂pn ∂p1

∂2f(p)
∂p1 ∂p2

∂2f(p)
∂p2

2
· · · ∂2f(p)

∂pn ∂p2

...
...

. . .
...

∂2f(p)
∂p1 ∂pn

∂2f(p)
∂p2 ∂pn

· · · ∂2f(p)
∂p2

n



−1

. (7)

This matrix contains n × n elements, where n is the number of parameters
in the model. In a typical case n will be on the order of 10,000. The number
of elements in the second derivative matrix, often called the Normal matrix,
would be 100,000,000. It would take a lot of computer time to calculate it,
a lot of memory to store it, and a lot more computer time to invert it. The
gradient descent methods make various assumptions about the importance
of different parts of the Normal matrix to reduce these requirements.

To understand the relative importance of the different elements of the
Normal matrix we need to understand the meanings of each part. The most
important classification of the elements is the distinction between the ele-
ments on the diagonal and those off it. The elements on the diagonal are
affected by a single parameter and are therefore somewhat easier to analyse.
The off-diagonal elements are affected jointly by two parameters.

The information contained in the off-diagonal elements described how
the effect on the function of changing parameter a is affected by changes in
parameter b. In essence it is related to the correlation of the two parameters.
If one considers the simple case where each parameter is varied in turn.
Parameter a is moved to the value where the function in minimized. Then
parameter b is changed. If the off-diagonal element for a and b is nonzero
than parameter a will have to be readjusted, and the larger the value the
greater the adjustment required.

The diagonal elements contain information about the affect of a param-
eter’s value on its own affect on the function. This, of course, will always be
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large. (If the diagonal element is zero than any value for that parameter will
be equivalent: a property which is usually undesirable in a parameter.)

2.2 Sparce Matrix Method

One can examine the relationship between the parameters in the model to
determine which pairs will have significant off-diagonal elements in the nor-
mal matrix. The pairs whose off-diagonal elements are predicted to be small
can then be ignored. Such selective attention only pays off when the vast
majority of elements are removed.

With some functions all the off-diagonal elements may be ignored where
other functions do not allow any. One must treat functions on a case by
case basis to determine which elements to use. An analysis of the residual
function for x-ray diffraction shows that the size of the off-diagonal elements
is related to the extent of electron density overlap of the two atoms. Since
atoms are fairly compact all off-diagonal terms between parameters in atoms
are negligible except for atoms bonded to one another, and the terms for those
pairs are small. Since an atom has a large overlap with its own electrons the
diagonal elements are very large compared to any off-diagonal ones.

The stereochemical restraints commonly used in protein refinement have a
different pattern. Here the parameters of atoms connected by a bond distance
or angle have strong correlation. Atoms not restrained to one another have no
correlation at all. The off-diagonal terms which are nonzero are as significant
as the diagonal ones.

This knowledge allows one to calculate the normal matrix as a sparse
matrix, the vast majority of the off-diagonal elements are never calculated or
even have computer memory allocated for their storage. The only elements
calculated are the diagonal ones (including contributions from both the crys-
tallographic and stereochemical restraints) and the off-diagonal elements for
parameters from atoms directly connected by geometric restraints.

Even with the simplification of the normal matrix introduced by the
sparse approximation the problem of inverting the matrix is difficult. There
are a number of methods available for generating an approximation to the
inverse of a sparse matrix. A discussion of these methods is beyond the scope
of this paper. However it is important to note that each of them includes
assumptions and approximations which should be understood when they are
used.
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The refinement program PROLSQ[2] uses the sparse matrix approximation
to the normal matrix. PROLSQ inverts the matrix using a method called
“Conjugate Gradient” which is unrelated to the Conjugate Gradient method
used to minimize functions. It is a sign of confusion to state that X-PLOR[1]
and PROLSQ both use the Conjugate Gradient method.

It is quite difficult to calculate the proper values for the elements of the
normal matrix. To simplify these calculations Konnert and Hendrickson de-
cided to implement all stereochemical restraints as distances. While this
restructuring of the restraints does simplify the normal matrix it makes the
restraints more difficult for the user to visualize and prevents the minimiza-
tion method from seeing the true, underlying nature of the restraints.

While the minimization method used in PROLSQ is the most powerful of
those used in large molecule refinement (and therefore the smallest radius of
convergence) in practice it does not seem to work any better than simple the
Conjugate Gradient method. Its limitations arise from the approximations
made in the calculation of the normal matrix elements and the way the space
matrix is inverted.

2.3 Diagonal Matrix

A further step in simplifying the normal matrix is made by ignoring all off-
diagonal elements. The normal matrix becomes a diagonal matrix, which
is inverted by simply inverting each diagonal element in turn. In essence
working with the matrix has become a one-dimensional problem. Since any
correlation between parameters has been assumed away the shift for a par-
ticular parameter can be calculated in isolation from the shifts of all other
parameters. The Full Matrix equation 5 becomes

si = −
∣∣∣∣∣∂f(p)

∂pi

∣∣∣∣∣
p=p0

/∣∣∣∣∣∂2f(p)

∂p2
i

∣∣∣∣∣
p=p0

. (8)

2.4 Steepest Descent

A further simplification can be made if all the diagonal elements of the normal
matrix have the same value. If this is true none of them need to be calculated
at all. The average value can be estimated from the behaver of the function
value as the parameters are shifted. The shift for a particular parameter is

8



simply

si = −
∣∣∣∣∣∂f(p)

∂pi

∣∣∣∣∣
p=p0

. (9)

The Steepest Descent method is far from Full Matrix. However is has the
advantage of a large radius of convergence. Since the gradient of a function
points in the steepest direction up hill, the Steepest Descent method simply
shifts the parameters in the steepest direction down hill. It is guaranteed to
reach the local minimum, given enough time. Any method which actually
divides by the second derivative is subject to problems in the curvature is
negative, or worst yet zero. Near a minimum all second derivatives must be
positive. Near a maximum they are all negative. As one moves away from
the minimum the normal matrix elements tend toward zero. The curvature
becomes zero at the inflection point which surrounds each local minimum.
The Full Matrix becomes unstable somewhere between the minimum and the
inflection point. The Diagonal Approximation method has a similar radius
of convergence.

However, the Steepest Descent method simply moves the parameters to
decrease the function value. It will move toward the minimum when the
starting point is anywhere within the ridge of hills surrounding the minimum.

2.5 Conjugate Gradient

The Steepest Descent method is very robust. It will smoothly converge to
the local minimum whatever the starting parameters are. However it will
require a great deal of time to do so. One would like a method which would
reach the minimum quicker.

The problem with Steepest Descent is that no information about the
normal matrix is used to calculate the shifts to the parameters. Where
ever the assumptions break down (the parameters have correlation and have
different diagonal elements) the shifts generated will be inefficient.

Just as one can calculate an estimate for the slope of a function by looking
at the function value at two nearby points, one can estimate the curvature
of a function by looking at the change in the function’s gradient at two
similar points. This experiment is routinely performed in Steepest Descent
refinement. The gradient is calculated, the parameters shifted a little, and the
gradient calculated again. In Steepest Descent the two gradients are never
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compared but if they were a bit of information about the normal matrix
could be learned.

The Conjugate Gradient method[3] does just this. The analysis of Fletcher
and Reeves showed that the Steepest Descent shift vector can be improved
by adding a well defined fraction of the shift vector of the previous cycle.
Each cycle essentially “learns” about one dimension of curvature in the n
dimensional refinement space. Therefore after n cycles everything is known
about the normal matrix and the minimum is found.

The shift vector for cycle k + 1 using Conjugate Gradient is

sk+1 = −
∣∣∣∣∣df(p)

dp

∣∣∣∣∣
p=pk

+ βk+1sk, (10)

where βk+1 is the ratio of the length of the function’s present gradient to its
previous length. During the first cycle there is no previous cycle. The first
cycle must be Steepest Descent.

The fundamental limitation of the Conjugate Gradient method is that it
is guaranteed to reach the minimum in n cycles only if the Taylor’s series
does indeed terminate, as assumed in equation 3. If there are higher order
terms, and there are in crystallographic refinement, then n cycles will only
get the model nearer to the minimum. One should start over with a new run
of n cycles to get the model even closer.

Even n cycles is a lot in crystallography. No one runs thousands of cycles
of Conjugate Gradient refinement, nor can they be run with current software.
The shifts become too small to be represented with the precision of current
computers. Small shifts are not necessary unimportant ones. These small
shifts add up to significant changes in the model, but we cannot calculate
them.

2.6 Conjugate Direction

The Conjugate Gradient method is better than the Steepest Descent method
because it uses some information about the normal matrix to improve the
quality of the shift vector. It would seems reasonable to believe that the
shift vector could be improved further if additional information were added.
For instance, we can calculate the diagonal elements of the normal matrix
directly, and quickly.
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All this information is combined together in the Conjugate Direction
method[5]. This method operates like the Conjugate Gradient method except
it uses the shifts from the Diagonal Matrix method for its first cycle instead
of the Steepest Descent method’s. The shift vector in Conjugate Direction is

sk+1 = −
∣∣∣∣∣df(p)

dp

∣∣∣∣∣
p=pk

/∣∣∣∣∣d2f(p)

dp2
i

∣∣∣∣∣
p=pk

+ β′
k+1sk , (11)

where the trick is calculating β′
k+1 correctly. This matter is discussed in

detail in [5].

3 What Does This Mean?

You have now read more than you ever wanted to know about function
minimization methods. The basic facts which have been presented are that
the methods commonly used find difficult cases where there are correlation
between parameters and where the diagonal elements for some parameters
differ from the average. These two limitations are the source of most problems
in refinement.

3.1 Rigid Body

If you have a model which is in error because of an overall rotation and trans-
lation, or even if only one domain has such an error, none of the refinement
packages will be able to correct this automatically. To correct this error a
concerted shift of a large number of atoms must be made. The indication
that such a shift is required in located in the off-diagonal elements of the
normal matrix, which has been discarded. For this problem to be corrected
you will have to resort to rigid body refinement.

In rigid body refinement the molecule is defined to contain one or more
groups within which the atoms cannot move relative to one another. Basically
the parameters of the model are recast in a form in which there no longer
are correlations between the parameters.

While it is unlikely that errors of this type will arise when solving a
problem with the MIR method it is quite common in MR and even Molecular
Substitution (Isomorphous inhibitor or mutant structures). Refinement in
these latter cases should always be started with overall rigid body refinement
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and refinement with each domain as a separate body. There have been a
number of cases where the refinement has “hung up” in the mid to upper
20’s (percent R-factor) where the problem was eventually traced to a small
unguessed domain shift.

3.2 Separate XYZ and B

Whenever no part of the normal matrix is directly calculated, as in Steepest
Descent and Conjugate Gradient, the method tends to minimize the func-
tion by shifting only those parameters which have large diagonal elements.
Because the diagonal elements are larger for positional parameters (like x,
y, and z) than the thermal factors, the B values will not be shifted to their
correct values. This is why routinely these classes of parameters are refined
in separate cycles. One first refines the positional parameters holding the B
values fixed and then refines the thermal factors holding the positions of the
atoms constant.

However because these parameters are correlated to one another it is
difficult for both types of parameters to reach their optimal values. One
must repeat the cycle many times for the parameters to settle down, more
cycles than are usually done.

All parameters may be varied simultaneously when the diagonal elements
of the normal matrix are explicitly included in the calculation of the shifts.
This is one reason why Conjugate Direction refinement requires fewer cycles.

3.3 Heavy Atoms

When refining with the Conjugate Gradient method the assumption is made
that all the diagonal elements are equal. For the positional parameters these
elements usually are similar enough that the real differences can be accommo-
dated with the usual number of cycles. However one factor which contributes
to the magnitude of the diagonal elements is the number of electrons sur-
rounding the atom. Heavy atoms such as iron, calcium, and chlorine have
much larger diagonal elements and will be shifted much larger distances. In
fact, with Conjugate Gradient they will be shifted too far.

This is why heavy atoms tend to oscillate in refinement. The amount
of shift is determined based on the average atom, which is about the size of
carbon, so the heavy atoms will be over shifted. The next cycle of refinement
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will attempt to correct their position but again will over shift. The atoms
will slip back and forth from cycle to cycle. This problem occurs for all
parameters of the heavy atom, both positional and thermal.

The problem can easily be overlooked if only the overall statistics are
monitored. The mean and rms shift may be very small even though one or
two atoms continue to move a great deal in each cycle. One must monitor
the atoms with the largest shifts and try to understand why they continue
to shift.

A minimization method which uses at least the diagonal elements will
correct the problem.

3.4 High B’s

Another factor which contributes to the magnitude of the diagonal elements
is the size of the B value of the atom. Atoms with high B values have smaller
diagonal elements for all their parameters. These atoms will be under shifted
in Conjugate Gradient refinement. Since usually atoms are created with small
B values and are under shifted in each cycle they will never reach their correct
location nor will their thermal parameters become as large as required by the
observations.

Atoms with large B values almost certainly should have even larger ones.
Again, a method which uses the diagonal elements will not exhibit this prob-
lem. However, most programs which do utilize the diagonal elements of the
normal matrix calculate them with the approximation that only the element
type of the atom is important. They ignore the contribution of the B value
to these terms. This is done for historical reasons. In small molecule struc-
tures, where refinement was originally developed, there usually are no atoms
with particularly large B values, and the assumption is good. The early pro-
tein refinement packages made the same assumption without reconsidering
its validity.

Therefore some programs will underestimate the thermal factors even
when using the diagonal elements. To learn if this is a problem in your
refinement you must discover exactly how these matrix elements are calcu-
lated. Usually this is not an easy task. The program’s source code must be
examined.

13



3.5 Local Minima

The last problem which must be considered is that we can never reach the
local minimum. Often it has been said that refinement was continued un-
til convergence at the local minimum. Even in a perfect case, where our
refinement residual was quadratic, both Conjugate Gradient and Conjugate
Direction would require n cycles where n is at least four times the number
of atoms in the model. No one has ever ran that many cycles.

This means that no one has ever been “trapped in a local minimum”.
They have never reached a local minimum.

4 Summary

The fact that we cannot include all the information about our residual func-
tion into our refinement results in some parameters of the model oscillating,
other becoming stuck, and the requirement that we run many, many cycles.
Until more powerful methods of minimization become available the crystal-
lographer must be on guard.
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